Lagerstroemia speciosa L. Attenuates Apoptosis in Isoproterenol-Induced Cardiotoxic Mice by Inhibiting Oxidative Stress: Possible Role of Nrf2/HO-1

Myocardial oxidative stress leading to apoptosis and remodeling is the major consequence of ischemic heart disease. In the present study, we investigated the effect of Lagerstroemia speciosa L. leave (LS) extract containing 1 % corosolic acid in the context of cardiovascular disorder by using isoproterenol (ISO)-induced myocardial injury mouse model. Serum was analyzed for specific cardiac injury biomarkers. Cardiac tissue was examined for lipid peroxidation, protein carbonyl content, antioxidant (GSH, GR, GPx, GST, SOD, CAT, NQO1, and HO-1), and apoptosis (cleaved caspase-3, Bax, Bcl-2, p53, and DNA fragmentation) status. Myocardial protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in different experimental groups was evaluated. Pathological changes in heart tissue and activities of matrix metalloproteinases (MMPs) were also analyzed. Our results demonstrated that LS pretreatment augmented myocardial antioxidant status and attenuated myocardial oxidative stress. Myocardial apoptosis as well as MMPs activities was significantly prevented by LS pretreatment in ISO-induced mice. In addition, the immunoblot of Nrf2 revealed that LS pretreatment enhanced the nuclear protein expression of Nrf2 when compared to ISO control group. Thus, the overall results indicate that corosolic acid has cardioprotective effect and may prevent the myocardial stress by suppressing apoptosis through up-regulation of myocardial antioxidant levels.

References:

  1. 1.Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., & White, H. D. (2012). Third universal definition of myocardial infarction. Nature Review Cardiology, 9, 620–633
  2. 2.He, B. J., Joiner, M. A., Singh, M. V., Luczak, E. D., Swaminathan, P. D., Koval, O. M., et al. (2011). Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nature Medicine, 17, 1610–1619.
  3. 3.Tavares, A. M. V., Araujo, A. S. D. R., Baldo, G., Matte, U., Khaper, N., Bello-Klein, A., et al. (2010). Bone marrow derived cells decrease inflammation but not oxidative stress in an experimental model of acute myocardial infarction. Life Sciences, 87, 699–706.
  4. 4.Kinugawa, S., Tsutsui, H., Hayashidani, S., Ide, T., Suematsu, N., Satoh, S., et al. (2000). Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: Role of oxidative stress. Circulation Research, 87, 392–398
  5. 5.Kim, S. H., Moon, H., Kim, H. A., Hwang, K., Lee, M., & Choi, D. (2011). Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Molecular Therapy, 19, 741–750.
  6. 6.Roy, S. J., & Prince, P. S. M. (2013). Protective effects of sinapic acid on cardiac hypertrophy, dyslipidemia and altered electrocardiogram in isoproterenol-induced myocardial infarcted rats. European Journal of Pharmacology, 699, 213–218
  7. 7.Li, H., Xie, Y. H., Yang, Q., Wang, S. W., Zhang, B. L., et al. (2012). Cardioprotective effect of Paeonol and Danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE, 7, e48872.
  8. 8.Yamaguchi, Y., Yamada, K., Yoshikawa, N., Nakamura, K., Haginaka, J., & Kunitomo, M. (2006). Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/ND mcr-cp rats, a model of metabolic syndrome. Life Sciences, 79, 2474–2479
  9. 9.Judy, W. V., Hari, S. P., Stogsdill, W. W., Judy, J. S., Naguib, Y. M. A., & Passwater, R. (2003). Antidiabetic activity of a standardized extract (GlucosolTM) from Lagerstroemia speciosa leaves in Type II diabetics: A dose-dependence study. Journal of Ethnopharmacology, 87, 115–117.
  10. 10.Stohs, S. J., Miller, H., & Kaats, G. R. (2012). A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytotherapy Research, 26, 317–324.
  11. 11.Fujiwara, Y., Komohara, Y., Ikeda, T., & Takeya, M. (2011). Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear-factor kappa B in tumor cells and tumor-associated macrophages. Cancer Science, 102, 206–211
  12. 12.Nho, K. J., Chun, J. M., & Kim, H. K. (2013). Corosolic acid induces apoptotic cell death in human lung adenocarcinoma A549 cells in vitro. Food and Chemical Toxicology, 56, 8–17
  13. 13.Ichikawa, H., Yagi, H., Tanaka, T., Cyong, J. C., & Masaki, T. (2010). Lagerstroemia speciosa extract inhibit TNF-induced activation of nuclear factor-kB in rat cardiomyocyte H9c2 cells. Journal of Ethnopharmacology, 128, 254–256
  14. 14.Judy, W. V., Hari, S. P., Stogsdill, W. W., Judy, J. S., Naguib, Y. M. A., & Passwater, R. (2003). Antidiabetic activity of a standardized extract (Glucosol™) from Lagerstroemia speciosa leaves in Type II diabetics. A dose-dependence study. Journal of Ethnopharmacology, 87, 115–117.
  15. 15.Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.
  16. 16.Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329, 23–38.
  17. 17.Ellman, G. L. (1959). Tissue sulfhydryl group. Archives of Biochemistry and Biophysics, 82, 70–77.
  18. 18.Aebi, H. (1974). Catalase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 673–677). New York: Academic Press.
  19. 19.Carlberg, I., & Mannervik, B. (1975). Glutathione reductase levels in rat brain. Journal of Biological Chemistry, 250, 5475–5480.
  20. 20.Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130.
  21. 21.Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158–169.
  22. 22.Zhu, H., Itoh, K., Yamamoto, M., Zweier, J. L., & Li, Y. (2005). Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: Protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Letters, 579, 3029–3036.
  23. 23.Yu, Y. M., Lin, H. C., & Chang, W. C. (2008). Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9. British Journal of Nutrition, 100, 731–738.
  24. 24.Li, L., Zhang, L., Pang, Y., Pan, C., Qi, Y., Chen, L., et al. (2006). Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats. Acta Pharmacologica Sinica, 27, 527–535.
  25. 25.Sudhees, N. P., Ajith, T. A., & Janardhanan, K. K. (2013). Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes. International Journal of Cardiology, 165, 117–125.
  26. 26.Vijayan, N. A., Thiruchenduran, M., & Devaraj, S. N. (2012). Anti-inflammatory and anti-apoptotic effects of Crataegus oxyacantha on isoproterenol-induced myocardial damage. Molecular and Cellular Biochemistry, 367, 1–8.
  27. 27.Angeloni, C., Leoncini, E., Malaguti, M., Angelini, S., Hrelia, P., & Hrelia, S. (2009). Modulation of phase II enzymes by sulforaphane: Implications for its cardioprotective potential. Journal of Agriculture and Food Chemistry, 57, 5615–5622.
  28. 28.Lakkisto, P., Siren, J., Kyto, V., Forsten, H., Laine, M., Pulkki, K., et al. (2011). Heme oxygenase-1 induction protects the heart and modulates cellular and extracellular remodelling after myocardial infarction in rats. Experimental Biology and Medicine, 236, 1437–1448.
  29. 29.Liu, X., Pachori, A. S., Ward, C. A., Davis, J. P., Gnecchi, M., et al. (2006). Heme oxygenase-1 (HO-1) inhibits post myocardial infarct remodeling and restores ventricular function. The FASEB Journal, 20, 207–2016.
  30. 30.Yan, D., Dong, J., Sulik, K. K., & Chen, S. Y. (2010). Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochemical Pharmacology, 80, 144–149.
  31. 31.Dreger, H., Westphal, K., Weller, A., Baumann, G., Stangl, V., Meiners, S., et al. (2009). Nrf2-dependent up regulation of antioxidative enzymes: A novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovascular Research, 83, 354–361.
  32. 32.He, H., Xu, J., Xu, Y., Zhang, C., Wang, H., He, Y., et al. (2012). Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. Journal of Ethnopharmacology, 140, 73–82.
  33. 33.Radhiga, T., Rajamanickam, C., Sundaresan, A., et al. (2012). Effect of ursolic acid treatment on apoptosis and DNA damage in isoproterenol-induced myocardial infarction. Biochimie, 94, 1135–1142.
  34. 34.Matsusaka, H., Ide, T., Matsushima, S., Ikeuchi, M., Kubota, T., Sunagawa, K., et al. (2006). Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice. Cardiovascular Research, 70, 457–465.
  35. 35.Naito, A. T., Okada, S., Minamino, T., Iwanaga, K., Liu, M., Sumida, T., et al. (2010). Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circulation Research, 106, 1692–1702.
  36. 36.Moshal, K. S., Rodriguez, W. E., Sen, U., & Tyagi, S. C. (2008). Targeted deletion of MMP-9 attenuates myocardial contractile dysfunction in heart failure. Physiological Research, 57, 379–384.
  37. 37.Phatharajaree, W., Phrommintikul, A., & Chattipakorn, N. (2007). Matrix metalloproteinases and myocardial infarction. Canadian Journal of Cardiology, 23, 727–733.
  38. 38.Nie, R., Xie, S., Du, B., Liu, X., Deng, B., & Wang, J. (2009). Extracellular matrix metalloproteinase inducer (EMMPRIN) is increased in human left ventricle after acute myocardial infarction. Archives of Medical Research, 40, 605–611.
  39. 39.Pei, Z., Meng, R., Li, G., Yan, G., Xu, C., Zhuang, Z., et al. (2010). Angiotensin-(1–7) ameliorates myocardial remodeling and interstitial fibrosis in spontaneous hypertension: Role of MMPs/TIMPs. Toxicology Letters, 199, 173–181.

发表评论

电子邮件地址不会被公开。 必填项已用*标注